
“I Like the Way You Think!”
Inspecting the Internal Logic of Recurrent Neural Networks

Thibault Sellam
tsellam@cs.columbia.edu
Columbia University

Kevin Lin
kl2806@columbia.edu
Columbia University

Ian Yiran Huang
iyh2110@columbia.edu
Columbia University

Carl Vondrick
cvondrick@gmail.com

Google Research

Eugene Wu
ewu@cs.columbia.edu
Columbia University

1 INTRODUCTION
Recurrent neural networks (RNNs) are revolutionizing many do-
mains. Their expressivity and the wide availability of training data
enables them to tackle a wide range of problems, including lan-
guage understanding [8], image generation [9], and program syn-
thesis [5], and the proliferation of libraries and programming frame-
works is significantly reducing the effort to construct and deploy
them [2, 4, 12].

How do we ensure that learned models behave reliably and as
intended? In traditional, non-learned software systems, we ensure
reliability through software engineering principles [22] such as
abstractions, modularity, testing, and logical requirements. Modern
engineers do not write software systems as a single code block, nor
do they deploy them without understanding the system logic and
extensively testing the system.

Our goal is to develop principles and tools to hold recurrent
network networks to the same reliability standards. The usual ap-
proach to evaluating and analyzing trained models treats them as
black boxes and uses end-to-end metrics such as perplexity or clas-
sification accuracy [7] as a proxy for reliability in production [6].
This method often views understanding and debugging the model’s
internal logic as secondary. Consequently, the rich ecosystem of soft-
ware engineering methodology and tools is not as mature for RNNs.

Understanding the internals of trained models is critical because
production systems cannot rely exclusively on end-to-end metrics
when the test data is unexpected or does not match the training
distribution. For example, adversarial attacks [13, 21] have shown
that models with excellent test score may not generalize well and
may be fooled by even small perturbations over the input data.
Moreover, end-to-end metrics are vulnerable to the “Clever Hans
effect” [19]: it is possible to achieve high end-to-end metrics by
disregarding the problem that we intend to solve and instead relying
on spurious correlations that may not generalize to production
settings [3].

Explaining these failures is challenging in end-to-end approaches.
In classic software systems, developers can step through a program
and use assertions to understand logical errors. However, since the
model’s logic is embedded as learned weights, these procedures
are not avaliable. Although tools can help explain the model’s
sensitivity to the input [11, 20] or identify salient features using a
simpler surrogate model [14, 16], they do not explain the model’s
internal decision making process.

To illustrate the problem, let us analyze a simple two-layer LSTM
model1 that learnt to evaluate Boolean expressions under left-to-
right precedence padded with X (for instance, the input sequence
XXX1|0&1&1 yields true). The model has 99.9% accuracy on test
data, but we wish to understand how the model evaluates the input
expressions. Does it memorize the training data? Or learn logic?
Or a mixture of the two?

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

● ●

●
●

●

●

● ●

●

● ● ●

●
●

● ●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ●

●
●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●
● ●

● ● ●

●
●

●
● ●

●
●

●
●

●

h_0
h_1

h_2
h_3

XXXXXXXXXXXXXXX0 | 0 | 1 | 1&0 | 1 | 0&1 | 1&1 | 0 | 0 | 1 | 0&0 | 0 | 0 | 1

0.0

0.3

−0.3
0.0
0.3

−0.3
0.0
0.3

−0.3
0.0
0.3

Input

A
ct

iv
at

io
ns

Figure 1: Activations over time of the LSTM layer for one
sequence.

Pioneers in the machine learning community have developed
effective methods for visualizing the state of individual or groups
of hidden units, for example in convolutional networks [1, 15, 17,
23, 24] and recurrent networks [10, 18]. To understand our toy
LSTM, we visualize the activations of the recurrent layer (h) as
stacked times series (Figure 1) [18]. The LSTM appears to “sleep”
while reading the padding character X. Discerning more complex
patterns, however, is difficult. For instance, the network behaves
differently for two instances of the same substring |0|0|, and it is
unclear why. Visualization relies on the developer to recognize the
salient logic embedded in the visualized patterns. This induces a
heavy cognitive burden, and is difficult to scale to even modestly
sized models or more complex tasks.

There is a discrepancy in the abstractions that existing tools pro-
vide and what developers desire. Existing tools operate at the level
of hidden state activations and weight matrices, whereas developers
reason about logic and functionality. In the above toy example, it
would be easier to ask whether the RNN has learned the Boolean
OR logic than to formulate this question in terms of unit activations
and weights. We propose Neural Inspection (NI) as a mechanism to
help bridge this gap. The idea is to let developers ask if the model is
learning higher level logic using logical constructs (e.g., in Python,
automata), and to automatically check and verify which parts of

1The first layer contains 4 hidden states, the second is fully connected with sigmoid
activation. The model was trained on 5,000 randomly generated sequences and tested
on 5,000 held sequences in 5 epochs. We minimized the binary cross-entropy with L2
activity regularization on the LSTM layer, using Keras/Tensorflow’s Adam.

the model are following the logic. In our example, do the hidden
units learn to process the Boolean OR?

We believe NI is an important primitive towards bringing soft-
ware engineering principles tomodel analysis. Understandingwhether
a given piece of logic is learned in a distributed or localized fashion
is the first step towards systematically modularizing the model
architecture, generating assertions for the model’s internal neuron
behavior, and inducing the logic that the model has learned.

2 OVERVIEW
Luigi is our first NI system, and operates in a hypothesis-driven
fashion. Developers provide hypothesis functions (e.g., Python func-
tions) that describe candidate logic, and a trained neural network
to analyze. Luigi will output sets of hidden units ranked by the
extent that each set replicates the functions’ logic. The hypothesis
functions may be simple (e.g., sequential counters, n-gram detec-
tors) or very complex (e.g., POS taggers, parsers). They may be
provided as a system library, by the user (e.g., regex filters) or in-
ferred from the data (described below). We find and rank the sets
empirically: we execute the model and each hypothesis functions f
on a test set of input sequences, we record the model’s activations
and compare them with f ’s output. We use the statistical depen-
dency between a subset of the activations and f to score candidate
pairings. Next, we will describe two types of pairings: single-unit
pairing and multi-unit pairing.
Single-unit Pairing: The simplest pairing measures the statistical
dependency between a single unit’s activations and f ’s output—
using Pearson’s correlation, mutual information, or some another
measure. Thus, it is possible to identify specialized neurons, and
understand whether a representation is local to a few units or
distributed across the whole model.

To illustrate this approach, we used Luigi to replicate Karpathy et
al. [10] who identified specialized units in character-level language
models. We trained a 128 units-wide LSTM to predict the next
character given the current one on a subset of Linux’ source code2,
ran the model over another subset of the code base, logged the
activations, and cross-correlated them with the output of dozens of
hypothesis functions that describe possible learnt features. These
functions identify various grammatical structures (e.g., brackets),
language keywords and parsing behaviors (e.g., nesting level), and
were automatically generated. Luigi identified a dozen of specialized
units for common grammatical structures, including parentheses,
curly brackets, indentation, comments and common keywords such
as struct and return. Figure 2 displays the output of units 53 and
127, which appear to detect comments and parentheses respectively.

Correlation does not guarantee that the unit has learned a given
hypothesis function. To this end, Luigi supports verification modes.
The first is to alter the dataset in such a way that the hypothesis
function f under investigation changes, but not the other functions.
If the target unit fires across many dataset transformations, it is
further evidence that learns the logic embedded in the function.
The second is generative—Luigi forces the unit’s value, samples
from the model, and checks that it triggers the paired function’s
output (in isolation).

2We trained the model with Keras on 6,206,996 characters of C source code
and achieved 63.64% accuracy on training data.

h127/P
aren.

h53/C
om

m
ent

	/ * 	 * inser t command into f i rst avai lable locat ion in table 	 * / 	for_each_kdbcmd(kp, i) { 	 	 i f (kp−>cmd_name == nul l) 	

−1

1

−1

1

Input

Hypothesis Func. Unit Activation

Figure 2: Activations of two LSTM units overlaid with the
output of the comments and parenthesis feature functions.

0

1

X

or, 0, 1

and

and, 0, 1

or

1

0

(a) Candidate FSM to evaluate
padded Boolean expression.

(b) LSTM activations h proj. on
2 first principal components.

Figure 3:Matching betweenRNN activations and FSM states.

Multi-unit Pairing: This approach checks whether a group of
units replicates f ’s logic. To do so, Luigi runs both f and the model
on test data, and it infers f ’s output from the model’s activations
with a classifier (e.g., logistic regression, SVM). High prediction
accuracy suggests that the units may be learning the hypothesis
function.

To illustrate, consider inspecting the boolean expression example.
We manually wrote several finite state machines that could solve
the task (e.g., Figure 3a), encoded each as a hypothesis function that
outputs the current state. Luigi then checked how well it could infer
the result of each function from the LSTM’s hidden state h (using
logistic regression). The highest ranked pairing provided more than
99% accuracy, which suggests that the model replicates its logic very
closely. Figure 3b shows the LSTM activations h colored by their
corresponding hypothetical FSM states. The consistent clustering
provides more evidence of the pairing accuracy (the sub-clusters
correspond to different characters).

The next step is to leverage feature selection and regularization
to identify subsets of units that appear to learn a given f , and
disregard the irrelevant units.

3 CONCLUSION
This short paper described a model-checking primitive called Luigi
that seeks to identify high-level logic learned by units or groups of
units. We envision that once found, it can be used to install dynamic
assertions to check deviation from the logic, generate richer sets of
test cases, modularize components of the model, and incorporate
other software engineering principles. Our near-term goal is to
scale Luigi to thousands of hypothesis functions and real-world
sequential models.

2

REFERENCES
[1] D. Bau, B. Zhou, A. Khosla, A. Oliva, and A. Torralba. Network dissection:

Quantifying interpretability of deep visual representations. arXiv preprint
arXiv:1704.05796, 2017.

[2] D. Baylor, E. Breck, H.-T. Cheng, N. Fiedel, C. Y. Foo, Z. Haque, S. Haykal, M. Ispir,
V. Jain, L. Koc, et al. Tfx: A tensorflow-based production-scale machine learning
platform. In Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 1387–1395. ACM, 2017.

[3] T. Bolukbasi, K.-W. Chang, J. Y. Zou, V. Saligrama, and A. T. Kalai. Man is to
computer programmer as woman is to homemaker? debiasing word embeddings.
In Advances in Neural Information Processing Systems, pages 4349–4357, 2016.

[4] D. Crankshaw, P. Bailis, J. E. Gonzalez, H. Li, Z. Zhang, M. J. Franklin, A. Ghodsi,
and M. I. Jordan. The missing piece in complex analytics: Low latency, scalable
model management and serving with velox. arXiv preprint arXiv:1409.3809, 2014.

[5] J. Devlin, J. Uesato, S. Bhupatiraju, R. Singh, A.-r. Mohamed, and P. Kohli. Robust-
fill: Neural program learning under noisy i/o. arXiv preprint arXiv:1703.07469,
2017.

[6] P. A. Flach. The geometry of roc space: understanding machine learning metrics
through roc isometrics. In Proceedings of the 20th International Conference on
Machine Learning (ICML-03), pages 194–201, 2003.

[7] A. Graves. Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850, 2013.

[8] A. Graves and N. Jaitly. Towards end-to-end speech recognition with recurrent
neural networks. In Proceedings of the 31st International Conference on Machine
Learning (ICML-14), pages 1764–1772, 2014.

[9] K. Gregor, I. Danihelka, A. Graves, D. J. Rezende, and D. Wierstra. Draw: A
recurrent neural network for image generation. arXiv preprint arXiv:1502.04623,
2015.

[10] A. Karpathy, J. Johnson, and L. Fei-Fei. Visualizing and understanding recurrent
networks. arXiv preprint arXiv:1506.02078, 2015.

[11] P. W. Koh and P. Liang. Understanding black-box predictions via influence
functions. arXiv preprint arXiv:1703.04730, 2017.

[12] A. Kumar, M. Boehm, and J. Yang. Data management in machine learning:
Challenges, techniques, and systems. In Proceedings of the 2017 ACM International

Conference on Management of Data, pages 1717–1722. ACM, 2017.
[13] A. Kurakin, I. Goodfellow, and S. Bengio. Adversarial examples in the physical

world. arXiv preprint arXiv:1607.02533, 2016.
[14] S. M. Lundberg and S.-I. Lee. Consistent feature attribution for tree ensembles.

arXiv preprint arXiv:1706.06060, 2017.
[15] A. Mahendran and A. Vedaldi. Understanding deep image representations by

inverting them. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 5188–5196, 2015.

[16] M. T. Ribeiro, S. Singh, and C. Guestrin. Why should i trust you?: Explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 1135–1144. ACM,
2016.

[17] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional net-
works: Visualising image classification models and saliency maps. arXiv preprint
arXiv:1312.6034, 2013.

[18] H. Strobelt, S. Gehrmann, B. Huber, H. Pfister, and A. M. Rush. Visual anal-
ysis of hidden state dynamics in recurrent neural networks. arXiv preprint
arXiv:1606.07461, 2016.

[19] B. L. Sturm. A simple method to determine if a music information retrieval
system is a “horse”. IEEE Transactions on Multimedia, 16(6):1636–1644, 2014.

[20] M. Sundararajan, A. Taly, and Q. Yan. Axiomatic attribution for deep networks.
arXiv preprint arXiv:1703.01365, 2017.

[21] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and
R. Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199,
2013.

[22] H. Van Vliet, H. Van Vliet, and J. Van Vliet. Software engineering: principles and
practice, volume 3. Wiley New York, 1993.

[23] J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson. Understanding neural
networks through deep visualization. arXiv preprint arXiv:1506.06579, 2015.

[24] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks.
In European conference on computer vision, pages 818–833. Springer, 2014.

3

	1 Introduction
	2 Overview
	3 Conclusion
	References

